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Abstract
Shape equations allow the understanding of complex conformations of
membranes of cells and cell organelles. We describe the theoretical approaches
used to describe the elastic behaviour of lipid membranes, review the sets of
equations proposed previously to analyse membrane mechanical equilibrium
and discuss their limitations. We further present a derivation of generalized
shape equations, which are not limited by any assumptions about the membrane
structure and shape. These equations represent a tool for the analysis of complex
shapes of cell membranes.

1. Introduction

Biological membranes form cellular borders. Plasma membrane separates cytoplasm from the
extracellular medium, hence, determining the cell as an entity. Intracellular membranes serve
as boundaries of cell organelles such as endoplasmic reticulum (ER), Golgi Complex (GC),
vacuoles, and form nano-compartments operating as intracellular traffic vehicles [1].

The basic element of a biological membrane is a lipid bilayer a few nanometres thick.
The membrane dimensions measured along the membrane surface vary from hundreds of
nanometres for the intracellular transport carriers to tens of microns for the plasma membranes.
Hence, in most biologically relevant cases the membrane width exceeds the thickness by several
orders of magnitude and the membrane can be seen as thin film.

Based on the dual hydrophilic–hydrophobic nature of phospholipids molecules, the
formation of a membrane is driven by the powerful hydrophobic effect [2], which guarantees
stability of the film against ruptures and structural defects. At the same time, the membranes
are flexible with respect to bending deformations and, therefore, can change their shapes
upon application of weak forces developed by intracellular systems such as a cytoskeleton
and/or various proteins binding to the membrane surface [3]. Membrane shapes represent an
important biological issue (see for review [3]). Diverse cells have evolved different shapes
of plasma membranes such as the corkscrew shape of spirochetes, biconcave disc-like shape
of erythrocytes, and flat shape of epithelial cells moving on a substrate. The intracellular
organelles and transport carriers have an even larger range of shapes beginning from simple
small spheres and thin long cylinders and going up to topologically complex reticular systems.
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Figure 1. Shape of endoplasmic reticulum of a living COS7 cell tagged with a GFP bound trans-
membrane protein. Courtesy of K Hirschberg.

Characteristic examples of striking conformations of intracellular organelles are
represented by the Golgi Complex (GC) and endoplasmic reticulum (ER) (figure 1) [1].
Geometrically, the shapes of the ER and GC membranes are characterized by two features.

• The membrane curvature changes drastically along the membrane surface.
• The radii of curvature of the interconnected tubes, spheres and discs constituting these

organelles equal, approximately, R ≈ 20–30 nm. This is only several times larger than the
membrane thickness d ≈ 4 nm, which sets a scale for the extent of membrane bending.
The bending is considered to be weak (or the curvature to be small) if d/R � 1, whereas
in the case of d/R � 1 the bending is strong (and the curvature is large).

Similar geometrical properties characterize some other intracellular systems such as
membrane carriers mediating transport between ER and GC [4–7], mitochondria, and plasma
membranes of endothelial cells, which develop internal tubes spanning the cell volume [8, 9].

Summarizing, in many cases the cell membranes are strongly and inhomogeneously
curved.

Understanding the origin, stability and dynamics of the peculiar shapes of biological
membranes requires analysis of the membrane thermodynamic equilibrium, and, more
specifically, of the mechanical equilibrium of membranes with respect to deformations. Such
analysis has been performed thoroughly for relatively simple cases of closed lipid bilayers
using numerical minimization of the overall energy of membrane deformations (see for
review [10–12]). An alternative way to deal with this problem is to solve the equations of
membrane mechanical equilibrium called the shape equations. The present paper is devoted to
an overview of the membrane shape equations suggested in the literature and the derivation of
a generalized set of shape equations allowing analysis of arbitrarily curved membrane shapes,
which characterize cell structures.

We proceed as follows. We first present the major geometrical notions necessary to
treat membrane shapes. Then we discuss the Gibbs thermodynamic method of membrane
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description, mention an alternative approach, which uses the notion of the intra-membrane
pressure tensor, and, finally, present the relationships between the two methods. We continue
by overviewing the three types of membrane shape equations proposed in the literature during
the last three decades, and, finally, present a derivation of a generalized form of these
equations.

2. Membrane shape, stresses and mechanical equilibrium

2.1. Geometrical description of a membrane. Dividing surface

Membranes are commonly described as surfaces, which is justified by the above-mentioned
smallness of the membrane thickness d compared to the linear dimension L ∼ √

A, where A
is the membrane area. Still, because of a non-vanishing thickness d , a systematic approach
is required for rigorous determination of the position of the surface used to describe the
membrane shape and properties. This issue has been clearly formulated by J W Gibbs, who has
introduced the notion of the dividing surface to treat thermodynamics of fluid interfaces [13].
Due to its generality, the Gibbs approach proved to be productive also for the description
of lipid membranes, which can be seen as interfaces between aqueous phases. A dividing
surface always lies parallel to the membrane plane, but its specific position with respect to
the membrane physical elements, such as the layers of the lipid polar heads, can be chosen
arbitrarily. At the same time, the major thermodynamic values characterizing the membrane,
except for thermodynamic potentials, depend on the position of the dividing surface (see
e.g. [14] and references therein). Therefore, once this position has been selected, the whole
analysis of membrane shapes must be performed for this specific dividing surface. For
symmetry reasons, it is convenient to describe a lipid membrane in terms of the mid-surface
lying between the two lipid monolayers forming the lipid bilayer.

A thorough description of the surface shape requires a set of geometrical definitions and
relationships, which are given in the appendix. Here we mention only the basic notions
necessary for derivation of the thermodynamic relationships and the equations of membrane
equilibrium (see e.g. [15–17]).

A surface is characterized at each point by a pair of local covariant basis vectors tangential
to the membrane surface and denoted as {�rα}. Here and below the index α and all other Greek
indices adopt the values 1 and 2 and indicate two directions tangential to the surface. As,
generally, the basis vectors are not mutually orthogonal, one needs also to introduce a set
of contravariant basis vectors {�rα}. The unit normal vector to the surface n⇀ is determined
by the vector product of the basis vectors, �n = �r1×�r2

|�r1×�r2| . The covariant and contravariant
basis vectors give rise to the covariant and contravariant metric tensors denoted as {aαβ} and
{aαβ}, respectively. The metric tensors perform transformations between the covariant and
contravariant components of all vectors and tensors of the surface.

The local basis vectors {�rα} change from point to point along the surface. Variations of the
basis vectors resulting from infinitesimal displacements tangential to the surface are determined
by the curvature tensor {bα

β} and the Christoffel symbols {�λ
αβ}. The two independent invariants

of the curvature tensor are the mean curvature, J = −(b1
1 + b2

2), and the Gaussian curvature,
K = b1

1 · b2
2 − b2

1 · b1
2. Note that, whereas the definition of the total curvature J is convenient

for the elastic description of the membranes, the invariant common for mathematical literature
is the mean curvature H = − 1

2 J . Alternatively, one use two other invariants of the curvature

tensor called the principal curvatures c1 and c2, which are given by c1 = H + √
H 2 − K and

c1 = H − √
H 2 − K .
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2.2. Gibbs thermodynamic description of membranes

Within the Gibbs approach, the extensive thermodynamic characteristics of the interface,
indicated in the following by superscript S, have a meaning of excess values, which represent
differences between these values in the real system and in the system of comparison where the
volume phases are extended with unchanged properties up to the dividing surface [13].

Whereas the logic of the Gibbs interface thermodynamics is analogous to that of
thermodynamics of bulk phases, it includes three pairs of conjugated variables specific for
interfaces. Each pair represents a geometrical characteristic of the dividing surface and the
corresponding stress generated within the interface: the surface area A and the lateral tension
γ ; the total curvature J and the bending moment τ ; and the Gaussian curvature K and the
stress κ̄ referred to as the modulus of the Gaussian curvature or the saddle-splay modulus [18].

The major equation of the Gibbs thermodynamics relates the differential of the interface
internal energy, dU S, with the changes of the geometrical characteristics and can be presented
is the form [17]

dU S = T · dSS +
∑

i

µi · dmS
i + γ · dA + τ · A · dJ + κ̄ · A · dK (1)

where SS is the surface entropy, the mS
i are the surface excesses of molecules constituting the

interface, and the µi are the chemical potentials. Note that the original Gibbs representation of
this fundamental equation is equivalent to (1) but operates with the principle curvatures c1 and
c2, and the corresponding stresses rather than with J , τ , and K , κ̄ [13].

The Gibbs interfacial theory (1) based on the notions of tension and curvature stresses
is general and does not involve any assumptions limiting its application. However, using
this theory for analysis of particular problems requires further elaboration at the expense of
generality of the approach. Specifically, the stress–strain relationships are needed representing
γ , τ , and κ̄ as functions of A, J and K .

2.3. Local thermodynamic approach to description of membranes

A productive model relating the interface stresses to the specific features of interface structure
is referred to as the local thermodynamics approach, which was suggested first to treat the
surface tension and bending moments of interfaces between fluid phases (see [17] for a review).
Later this approach has been used for a description of membranes [19–22]. A membrane is
considered as a layer with finite thickness, which can be characterized at each point by a set
of thermodynamic variables. As the properties of the membrane change across its thickness,
the thermodynamic variables depend on the position inside the membrane. Local interactions
within the membrane are effectively characterized by a pressure tensor P y

x , which is analogous
to the usual thermodynamic pressure, but accounts for the possible anisotropy of the intra-
membrane forces. The indices of the P y

x can adopt three values corresponding to one normal
(denoted by n) and two tangential (denoted by 1 and 2) directions with respect to the membrane
plane:

P =



Pn

n Pn
1 Pn

2

P1
n P1

1 P1
2

P2
n P2

1 P2
2



 . (2)

The index n will be reserved for the normal direction throughout the whole paper. The pressure
tensor P y

x is determined at each point within the membrane and its elements can be expressed
in the local basis related to this point. The upper and lower boundaries of the membrane are
subjected to the external pressures Po and Pi , respectively.
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Figure 2. A membrane fragment (notations).

In a simplest case of a homogeneously curved membrane or an interface between
immiscible fluid phases (for example, between water and oil), the pressure tensor must have
a diagonal form

P =
( Pn 0 0

0 PT 0
0 0 PT

)
, (3)

where the index T denotes the two equivalent tangential directions. The membrane stresses
can be expressed in terms of the pressure tensor (3) and the pressures in the bulk. For that the
position inside a membrane element is determined by the distance z from the dividing surface
measured in the direction perpendicular to the membrane plane (figure 2), whereas the two
membrane boundaries are characterized by zo and zi . In addition a step-function Pi−o(z) has
to be defined, which equals Po above and Pi below the dividing surface. The bending moment
τ and the modulus of Gaussian curvature κ̄ can be expressed in the form [17, 19, 20]

τ =
∫ z0

zii

(Pi−o − PT ) · z · dz (4)

κ̄ =
∫ z0

zii

(Pi−o − PT ) · z2 · dz. (5)

To determine the lateral tension γ , we first have to define

γ0 =
∫ z0

zii

(Pi−o − PT ) · dz, (6)

which gives the value of γ for a flat membrane. The lateral tension of a curved membrane is
determined by [17]

γ = γ0 + τ · J + κ̄ · K . (7)
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2.4. Equations of membrane mechanical equilibrium

The equations of mechanical equilibrium of a membrane can be derived in two ways. The first
is minimization of the membrane energy with respect to deformations leading to changes in the
membrane area A, total J and Gaussian K curvatures [12, 16, 17, 20]. An alternative way is to
consider directly the equilibrium of forces acting on a membrane element and resulting from
the membrane tension γ , the bending moment τ , and the Gaussian modulus κ̄ [19, 23].

Derivation of the equilibrium equations based on minimization of the interface energy (1)
was performed by Murphy [17] for liquid interfaces, and confirmed later in a series of related
works [24], which addressed fluid interfaces characterized by a diagonal pressure tensor (3).
The resulting three equations relate the surface stresses γ , τ and κ̄ with the curvatures J and
K , and describe the equilibrium of the interface element with respect to displacements in the
direction normal to the membrane surface:

γ · J − τ · (J 2 − 2K ) − κ̄ · J · K = Pi − Po, (8)

displacements in the direction tangential to the membrane surface:

∇αγ − τ · ∇α J − κ̄ · ∇α K = 0, (9)

and, finally, rotation of the interface element with respect to its initial orientation:

∇ατ + J · ∇ακ̄ + bν
α · ∇ν K = 0. (10)

In (8)–(10), ∇α denotes the two-dimensional covariant gradient in the plane of the dividing
surface (see the appendix).

Equation (8) for equilibrium in the normal direction represents a generalized form of
Laplace equation accounting, in addition to the lateral tension γ , for contributions of bending
stresses τ and κ̄ . In the case of small curvatures, neglecting the corresponding terms in (8)
results in the traditional form of the Laplace equation, γ · J = 
P , where 
P = Pi − Po.

A lipid membrane exhibits properties of a solid film with respect to deformations
transversal to its plane, and differs, therefore, from a liquid interface. Minimization of free
energy and derivation of equilibrium equation for a lipid membrane have been performed by
Helfrich [18] and further developed by Ou-Yang and Helfrich [16] and others (see [12] for
references). The Helfrich approach was based on using an elastic model relating the bending
moment stresses and the total curvature,

τ = κ · (J − JS), (11)

where κ is the bending modulus and JS is the membrane spontaneous curvature [18]. A major
assumption of the Helfrich approach is the smallness to the membrane curvature. The resulting
equilibrium equation is

λ · J + κ · (J − JS) · ( 1
2 J 2 − 2K + 1

2 JS · J
)+ κ · ∇2 J = 
P, (12)

where λ was called the tensile stress and played a role of Lagrange multiplier conjugated to the
membrane area.

The Ou-Yang–Helfrich equation does not assume any particular form of the pressure
tensor. Its limitation consists in consideration of small deviations of the membrane shape from
the flat one. Therefore, for the cases of small curvature, the Ou-Yang–Helfrich equation is
general and includes the Murphy equation (8) as a particular case.

Derivation of the equations of membrane equilibrium based on force balance was
performed by Evans and Skalak [23]. This approach was limited neither by addressing fluid
interfaces nor by analysis of small curvatures. Its only limitation was related to considerations
of axisymmetric membrane shapes. The membrane stresses within this approach were
expressed in terms of the tension resultants Tm , Tφ and moment resultants, Mm , Mφ , where
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the subscripts m and φ indicate, respectively, the components parallel and perpendicular to the
meridian of the axisymmetric shape. The equilibrium equations in the directions tangential and
normal to the surface are, respectively,

∂(r Tm)

∂s
− Tφ

∂r

∂s
+ cm ·

[
∂(r Mm)

∂s
− Mφ

∂r

∂s

]
= 0 (13)

cm · Tm + cφ · Tφ − 1

r
· ∂2(r Mm)

∂s2
+ 1

r
· ∂

∂s

(
Mφ · ∂r

∂s

)
= 
P (14)

where cm and cφ are the principal curvatures of the surface, s is a coordinate measured along
the meridian of the shape and r is the radial coordinate measured as a distance from the axis of
symmetry.

The tension and moment resultants can be related to the stresses of the Gibbs approach by
Tm = γ0 + τ · cφ , Tφ = γ0 + τ · cm , Mm = τ + κ̄ · cφ , Mφ = τ + κ̄ · cm . Insertion of these
relationships into (13) and (14) allows presenting the Evans–Skalak equations in the form

∂γ

∂s
− τ · ∂ J

∂s
− κ̄ · ∂K

∂s
= 0 (15)

γ · J − τ · (J 2 − 2K ) − κ̄ · J · K − ∇2τ − cφ · ∇2κ̄ − ∂κ̄

∂s
· ∂cφ

∂s
= 
P (16)

where ∇2 is the two-dimensional Laplace operator in the surface plane. The equation (16)
goes beyond the Murphy equation, because it describes membranes, which are non-fluid in
the transversal direction and can adopt shapes with inhomogeneous curvatures; it is also
more general than the Ou-Yang–Helfrich equation as it is valid for arbitrary rather than small
curvatures. At the same time, the Evans–Skalak equations (13)–(16) are limited as compared
to the Murphy and Ou-Yang–Helfrich equations by consideration of axisymmetric shapes only.

Summarizing, each of the three previous approaches to derivation of the membrane
equilibrium equations is limited by specific assumptions about the membrane structure or extent
of bending. They need to be extended to a description of membranes with arbitrary elastic
properties and arbitrary shapes. Below we present a derivation of generalized equilibrium
equations, which are not limited by any assumptions about the membrane shape or structure
of the pressure tensor. We use the approach of force balance with respect to displacements of
a membrane element in the normal and tangential directions and with respect to rotation. The
resulting equations include as special cases the sets of equilibrium equations mentioned above.

3. Generalized equations of membrane equilibrium

We consider a fragment of a curved membrane, which will be described in terms of a particular
dividing surface (figure 2) arbitrarily chosen inside the membrane and called the reference
surface. The membrane is considered as consisting of elementary layers parallel to the reference
surface. Each elementary layer is characterized by the coordinate z measured along the Z -axis
perpendicular to the membrane plane. At the reference surface z = 0, while the upper and the
lower boundaries of the membrane have the coordinates zo and zi , respectively.

The distribution of the internal membrane stresses is determined by the pressure tensor (2)
whose elements vary through the membrane thickness, and, hence, depend on the coordinate z.

3.1. Forces applied to the membrane fragment

The total force acting on the membrane fragment consists of the force �f applied to the sides
of the layer, which can be expressed in terms of the pressure tensor P y

x , and the force �fout,
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which is a balance of forces exerted on the upper and lower boundaries of the membrane and
determined by the outer pressures Po, Pi .

Let us first calculate �f as a sum of contributions from the elementary layers. The force
acting on the sides of an elementary layer and produced only by the tangential components of
the pressure tensor is

δt �f = δz ·
∮

dl · Pαβ · bβ · �rα (17)

where dl is an element of perimeter of the elementary layer, bβ is a component of the unit
vector �b lying in the plane of the elementary layer perpendicularly to its circumference, and δz
is the thickness of the elementary layer. In (17) and throughout the paper we take a sum over
the pairs of equal superscripts and subscripts. The integration is performed over the perimeter
of the elementary layer taking into account that the basis vectors �rα and the components of the
pressure tensor Pαβ depend on the position along the perimeter. The differential geometrical
relationships used below are presented in the appendix and their numbers are preceded by A.

Accounting for the variations of the basis vectors given by (A.10), applying the Stokes
theorem, and retaining only the terms of the first non-vanishing order in the area δs of the
element of the dividing surface, we obtain

δt �f = δz · δs · (�rβ · ∇γ Pβγ + �n · bλα · Pαλ
)
, (18)

where ∇γ is a component of the covariant gradient, and bλα is a covariant component of the
tensor of curvature, both determined at the surface describing the elementary layer.

The contribution to this force of the normal components of the pressure tensor is

δn �f = δz ·
∮

dl · Pnγ · bγ · �n. (19)

Analogously to the calculation above, we obtain from (19) in the first non-vanishing order in
δs

δn �f = δz · δs · (�n · ∇λ Pnλ − �rν · bν
γ · Pnγ

)
. (20)

The total force acting on the sides of the elementary layer is the sum of (18) and (20):

δ �f = δz · δs · [�rα · (∇λ Pλ
α − bγα · Pγ n

)+ �n · (bα
λ · Pλ

α + ∇γ Pγ n
)]

. (21)

The total force acting on the sides of the membrane fragment is given by integration
of (21) over the membrane thickness z. Before performing this integration, we express all
the values entering (21) through the characteristics of the reference surface indicated by the
front superscript ‘o’ (see (A.21)–(A.36)). The resulting expressions for the total force acting
on the membrane fragment in the tangential direction is

fα = ods ·
∫ zo

zi

dz
{

o∇γ

[(
1 + o J · z

) · o Pγ
α + z · obγ

ν · o Pν
α

]− obγ
α · o Pn

γ + z · o K · o Pn
α

}
.

(22)

The total force acting on the sides of the membrane fragment in the normal direction is

f n = ods ·
∫ zo

zi

dz
{

obγ
α · o Pα

γ − z · o K · o Pα
α + o∇γ

[(
1 + o J · z

) · o Pγ n + z · obγ
ν · o Pνn

]}
.

(23)

In (22), (23) ods is the area of reference surface of the membrane fragment.
The force �fout exerted on the membrane fragment by the outside medium has only one

component, which is normal to the reference surface and equals

f n
out = ods · [Po · (1 + zo · o J + z2

o · o K
)− Pi · (1 + zi · o J + z2

i · o K
)]

.
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The latter relationship can be presented in the form

f n
out = oδs ·

[
(Po − Pi ) +

∫ zo

zi

dz
(

o J + 2 · o K · z
)]

. (24)

where Pi−o is the step function defined above.

3.2. Total torque applied to the membrane fragment

The torque applied to the sides of the membrane fragment will be determined with respect to an
arbitrary point at the reference surface, which does not limit the generality of the consideration.
The total torque is a sum of contributions of the elementary layers. Similarly to the calculations
of the forces above, we determine separately the torque δt �M exerted on an elementary layer
by the tangential components of the pressure tensor, and δn �M , which is due to the normal
components of the pressure tensor. The first contribution is given by

δt �M = δz ·
∮

dl · Pαγ · bγ · [ �ρ × �rα

]
, (25)

where the integration is performed over the perimeter of the elementary layer, �ρ is a vector
connecting the fixed point at the reference surface and the current point at the perimeter of the
elementary layer, and × denotes the vector product.

The second contribution is

δn �M = δz ·
∮

dl · Pnγ · bγ · [ �ρ × �n]. (26)

The following calculation of the total torque is based on (25), (26) and is analogous to the
above determination of the total force. Accounting for the expressions (A.10), (A.11) derived
in the appendix, we apply the Stokes theorem to (25), (26), retain the terms of the first non-
vanishing order in the area of the membrane fragment and express all the values through the
characteristics of the reference surface. As a result, the tangential component of the torque
(corresponding to rotation of the vector normal to the reference surface) is

Mα = ods ·
∫ zo

zi

dz · ocβα ·
{

z · o∇o
ν Pν

β + z2 · o∇ν

(
o J · o Pν

β + obν
γ · o Pγ

β

)

−
(

o Pn
β + z · o J · o Pn

β + z · obγ

β · o Pn
γ

)}
, (27)

where ocβα is the discriminant tensor at the reference surface (A.6). In the following we drop
the superscript ‘o’ keeping in mind that all the values are related to the reference surface.

3.3. Equations of equilibrium

To present the equations of equilibrium in the most compact form, we first define the following
tensors:

Cν
0β =

∫ zo

zi

dz · (Pi−o · δν
β − Pν

β

)
, (28)

Cν
1β =

∫ zo

zi

dz · z · (Pi−o · δν
β − Pν

β

)
, (29)

Cν
2β =

∫ zo

zi

dz · z2 · (Pi−o · δν
β − Pν

β

)
, (30)

where δν
β is the unitary tensor. The tensors (28)–(30) will be referred to as the tensors of zero,

first and second bending moments, respectively.
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The equation of equilibrium in the normal direction follows from condition of zero total
normal force given by the sum of (23) and (24). Accounting for (23), (24) and (28)–(30), this
condition can be presented in the form

bα
λ · Cλ

0α − K · Cλ
1λ − ∇γ ·

∫ zo

zi

dz · [(1 + J · z) · Pnγ + z · bγ
ν · Pnν

] = Po − Pi . (31)

To express the equations of zero lateral force in terms of the moments (28)–(30) we note that
the tensor Pi−oδ

ν
β is constant over the surface. Therefore, the terms proportional to the gradient

of this tensor are zero and can be added to the expression (22) without changing the latter. This
results in

∇γ Cγ

0α + J · ∇γ Cγ

1α + bγ
ν · ∇γ Cν

1α + bγ
α ·
∫ zo

zi

Pn
γ dz − K ·

∫ zo

zi

z · Pn
γ dz = 0. (32)

The equation for zero torque following from (27) is

∇γ Cγ

1α + J · ∇γ Cγ

2α + bγ
ν · ∇γ Cν

2α +
∫ zo

zi

[(1 + z · J) · Pn
α + z · bν

α · Pn
ν ] dz = 0. (33)

The equilibrium equations (31), (32) can be rewritten in a different form where the contributions
of the normal components of the pressure tensor Pνn are expressed, using (33), in terms of the
bending moments.

Then the equation of equilibrium in the normal direction has the form

bα
λ · Cλ

0α − K · Cλ
1λ − ∇α

(∇γ Cγ

1α + J · ∇γ Cγ

2α + bγ
ν · ∇γ Cν

2α

) = Po − Pi , (34)

and the equation of equilibrium in the tangential direction is

∇γ Cγ

0α + J · ∇γ Cγ

1α + bγ
ν · ∇γ Cν

1α − bγ
α · ∇νCν

1γ − J · bβ
α · ∇νCν

1β − bβ
α · bν

γ · ∇νCγ

2β = 0.

(35)

3.4. Equilibrium equations in special cases

The equilibrium equations (31)–(35) derived above are valid in a general case of a non-diagonal
pressure tensor. Therefore, they describe interfaces of arbitrary structure including layers,
which have properties of solid films in both tangential and normal directions. The equilibrium
equations are simplified if the interface possesses properties of a fluid at least in some of the
directions.

The simplest case is that of a completely fluid interface such as those between two
immiscible liquids. As mentioned above, for such systems the pressure tensor has a diagonal
form (3) independently of the shape of the interface, meaning that its components Pβ

γ for
γ �= β , and Pn

γ vanish. In this case the tensors of the bending moments (28)–(30) have the
forms

Cα
0β = C0 · δα

β , Cα
1β = C1 · δα

β , Cα
2β = C2 · δα

β , (36)

where C0, C1, and C2 represent, respectively, the stress factor γ0, the bending moment τ , and
the modulus of Gaussian curvature κ̄ , given by the equations (6), (4) and (5).

Inserting (36) into (31)–(35), taking into account that Pn
γ vanish, and using (A.14) we

obtain for equilibrium in the normal direction:

J · γ0 + 2 · K · τ = Pi − P0, (37)

for equilibrium in the tangential direction:

∇γ γ0 + J · ∇γ τ + K · ∇γ κ̄ = 0, (38)
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and for equilibrium with respect to rotation:

∇ατ + J · ∇ακ̄ + bν
α · ∇ν K = 0. (39)

Inserting into (37)–(39) the expression (7) of the stress factor γ0 through τ , and κ̄ , we obtain
the Murphy equations.

Consider a lipid membrane, which has properties of a liquid in the tangential direction, but
retains the properties of a solid film in the normal direction. In this case, the normal components
of the pressure tensor Pn

γ can be different from zero, while the non-diagonal tangential
components (Pα

β for α �= β) vanish independently of the membrane shape. Inserting (36)
into (33)–(35) and simplifying them we find the equation of equilibrium in the normal direction

J · γ0 + 2 · K · τ + ∇β
(
∇βτ + J · ∇β κ̄ + bγ

β∇γ κ̄
)

= Pi − Po, (40)

the equation of equilibrium in the tangential direction having the form (38), and the equation
of equilibrium with respect to rotation

∇ατ + J · ∇ακ̄ + bν
α · ∇ν K +

∫ zo

zi

[(1 + z · J ) · Pn
α + z · bν

α · Pn
ν ] dz = 0. (41)

The equations (40) and (38) can be reduced to the Ou-Yang–Helfrich shape equation in a
particular case where the bending moment τ is related to the total curvature according to (11),
whereas the modulus of Gaussian curvature κ̄ is assumed to be constant along the membrane.

Summarizing, the equilibrium equations (31)–(35) derived in this section have a general
character going beyond any specific model and are valid for membranes and interfaces with
arbitrary structures and shapes. In special cases these equations provide the previously
suggested sets of equilibrium equations.
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Appendix. Summary of geometrical definitions, relationships and derivations

Consider within the membrane fragment an arbitrary dividing surface determined by vector
�R(ξ 1, ξ 2). At each point of the surface a pair of independent covariant tangential basis vectors
{�rα} are given by

�rα = ∂ �R
∂ξα

. (A.1)

The contravariant tangential basis vectors {�rα} are determined according to the condition that
their scalar products with the covariant basis vectors are given by the symmetric unitary tensor
δβ
α ,

�rα · �rβ = δβ
α . (A.2)

The elements of the covariant and contravariant metric tensor are determined by the scalar
products of the corresponding basis vectors

aαβ = �rα · �rβ, aαβ = �rα · �rβ. (A.3)
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An element of surface area is determined by

ds = √
a · dξ 1dξ 2, (A.4)

where a = det(aαβ).
The unit normal to the surface is

�n = �r1 × �r2√
a

. (A.5)

For applications we define the covariant discriminant tensor

cαβ = √
a · εαβ, (A.6)

where ε11 = ε22 = 0, whereas ε12 = ε21 = −1.
Consider the derivatives of the basis vectors with respect to displacements along the

surface, �rαβ = ∂�rα

∂ξβ . They are determined by the Gauss formulae

�rαβ = �ν
αβ · �rν + bαβ · �n, (A.7)

where �ν
αβ are the Christoffel symbols, and bαβ is the covariant tensor of curvature, which can

be also presented as a scalar product

bαβ = �n · �rαβ = −�nα · �nβ. (A.8)

Transitions between the covariant and contravariant components of the vectors and tensors is
performed by means of the metric tensor, e.g.,

bα
β = aαγ · bγβ . (A.9)

As noted in the body of the paper, the sum is taken over each pair of equal indices.
Using (A.7), (A.9) we can determine the infinitesimal changes along the surface of the

basis vectors and the unit normal vector

�rα

({
ξβ + dξβ

}) = �rα + [
�ν

αβ · �rν + bαβ · �n] · dξβ, (A.10)

�n ({ξβ + dξβ
}) = �n − bν

γ · �rν · dξγ . (A.11)

The two independent scalars of the curvature tensor are the total curvature

J = −bα
α = −bν

α · δα
ν , (A.12)

and the Gaussian curvature

K = 1
2 · cαβ · cλγ · bα

λ · bβ
γ . (A.13)

Useful relationships between the components of the curvature tensor, which can be readily
proved, are

bα
λ · bλ

β = −J · bα
β − K · δα

β (A.14)

bβ

λ · bλ
β = J 2 − 2K . (A.15)

The covariant derivative (gradient) of a scalar is

∇αϕ = ∂ϕ

∂ξα
, (A.16)

of a vector surface �A is

∇β Aα = ∂ Aα

∂ξβ
− �λ

αβ · Aλ, (A.17)

and of a tensor is

∇γ fαβ = ∂ fαβ

∂ξγ
− �λ

γα · fλβ − �λ
γβ · fαλ. (A.18)
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The derivatives of contravariant and mixed components of surface vectors and tensors can be
derived from (A.16)–(A.18).

The covariant divergence of a vector is

div �A = ∇α Aα = 1√
a

· ∂
(√

a Aα
)

∂ξα
. (A.19)

The Stokes theorem relating the integral of a surface vector �A over a closed contour L on the
surface to integral of the divergence of �A over the area S limited by this contour is expressed
as ∮

L
Aα · bα · dl =

∫

S
div �A · ds, (A.20)

where bα is a unit vector tangential to the surface and normal to the contour.
In the following, we present the relationships between the geometrical characteristics of

the reference surface and those of a surface representing an arbitrary elementary layer of the
membrane fragment. The two surfaces are parallel with distance z between them. The values
related to the reference surface will be denoted by the front superscript ‘o’.

The relation between the vectors determining the two surfaces is

�R = o �R + o�n · z. (A.21)

Based on (A.21), we obtain the relationships for the covariant and contravariant basis vectors

�rα = o�rα − obγ
α · o�rγ · z, (A.22)

�rα = (1 + o J · z) · o�rα + obα
γ · o�rγ · z

1 + o J · z + o K · z2
; (A.23)

for the covariant metric tensor

aαβ = (1 − o K · z2) · oaαβ − (2 · z + o J · z2) · obαβ; (A.24)

for the contravariant metric tensor

aαβ = (1 + 2 · 0 J · z + 0 J 2 · z2 − 0 K · z2) · 0aαβ + (2 · z + 0 J · z2) · 0bαβ

(
1 + 0 J · z + 0K · z2

)2
; (A.25)

for the determinant of the metric tensor

a = (
1 + 0 J · z + 0 K · z2

)2 · 0a; (A.26)

for the covariant curvature tensor

bαβ = (1 + 0 J · z) · 0bαβ + 0 K · 0aαβ · z; (A.27)

for the mixed tensor of curvature

bα
β =

0bα
β − 0 K · δα

β · z
(
1 + 0 J · z + 0 K · z2

) ; (A.28)

for the covariant discriminant tensor

cαβ = (
1 + 0 J · z + 0 K · z2

) · 0cαβ (A.29)

for the contravariant discriminant tensor

cαβ =
0cαβ

(
1 + 0 J · z + 0 K · z2

) ; (A.30)

for the Christoffel symbols

�λ
αβ = 0�λ

αβ − z ·
(
1 − 0 J · z

) · 0∇β
0bλ

α + z · 0bλ
ν · 0∇β

0bν
α(

1 + 0 J · z + 0 K · z2
) ; (A.31)
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for the area element

ds = (
1 + 0 J · z + 0 K · z2

) · 0ds; (A.32)

for the total curvature

J =
0 J + 2 · 0 K · z(

1 + 0 J · z + 0K · z2
) ; (A.33)

for the Gaussian curvature

K =
0 K(

1 + 0 J · z + 0 K · z2
) ; (A.34)

and for the components of the pressure tensor

Pγ
α = (

0 Pγ
α + z · (0 J + 0bγ

ν · 0 Pν
α − 0bλ

α · 0 Pγ

λ

)− z2 · (0 J · 0bλ
α · 0 Pγ

λ − 0bγ
ν · 0bλ

α · 0 Pν
λ

))

× (
1 + 0 J · z + 0K · z2

)−1
, (A.35)

Pnγ =
(
1 + 0 J · z

) · 0 Pnγ + z · 0bγ
ν · 0 Pnγ

(
1 + 0 J · z + 0K · z2

) . (A.36)
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